New Integral Representations for Bernoulli and Euler Polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials

We investigate Fourier expansions for the Apostol-Bernoulli and Apostol-Euler polynomials using the Lipschitz summation formula and obtain their integral representations. We give some explicit formulas at rational arguments for these polynomials in terms of the Hurwitz zeta function. We also derive the integral representations for the classical Bernoulli and Euler polynomials and related known ...

متن کامل

New identities involving Bernoulli and Euler polynomials

Using the finite difference calculus and differentiation, we obtain several new identities for Bernoulli and Euler polynomials; some extend Miki’s and Matiyasevich’s identities, while others generalize a symmetric relation observed by Woodcock and some results due to Sun.

متن کامل

A new class of generalized Bernoulli polynomials and Euler polynomials

The main purpose of this paper is to introduce and investigate a new class of generalized Bernoulli polynomials and Euler polynomials based on the q-integers. The q-analogues of well-known formulas are derived. The q-analogue of the Srivastava–Pintér addition theorem is obtained. We give new identities involving q-Bernstein polynomials.

متن کامل

Arith . IDENTITIES CONCERNING BERNOULLI AND EULER POLYNOMIALS

We establish two general identities for Bernoulli and Euler polynomials, which are of a new type and have many consequences. The most striking result in this paper is as follows: If n is a positive integer, r + s + t = n and x + y + z = 1, then we have r s t x y n + s t r y z n + t r s z x n = 0 where s t x y n := n k=0 (−1) k s k t n − k B n−k (x)B k (y). It is interesting to compare this with...

متن کامل

On Identities Involving Bernoulli and Euler Polynomials

A class of identities satisfied by both Bernoulli and Euler polynomials is established. Recurrence relations for Bernoulli and Euler numbers are derived.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1993

ISSN: 0022-247X

DOI: 10.1006/jmaa.1993.1153